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1. INTRODUCTION

In a preceding paper [12] we have proved approximation theorems for
contraction operators on L*[0, 1]. The purpose of the present paper is to
prove analogues of the results of [12] for contraction operators on L*[0, co).
We use the nonnegative real half-line for simplicity of notation; our results
hold also when the underlying space is the real line.

Let (X, #, n) denote the measure space consisting of the nonnegative real
half-line, the Lebesgue measureable sets and Lebesgue measure. For brevity,
the measure space (X, %, ) will be denoted by (X,pu). On X, we shall
consider only #-measurable real functions (modulo u-equivalcnce), and by
a set on X we shall always mean an element of %#. Relations among sets and
functions are understood to hold modulo sets of u-measure zero.

Assume | <p < o0, 1 g < o. We shall denote L7”(X,%#,un) by
L7(X, ), or, briefly by L?. Let [L?, L] be the set of real bounded operators
from L? into L% and let [L?] = [L?, L?]. It is well-known that [L?, L?] is an
order complete vector lattice. For each T e[L”], the positive operators
T'=Tv0, T =(—T)vO0and {T| =T -+ T are called the positive
part, the negative part, and the linear modulus of T, respectively (see [3, 2, 16]
for details).

Let €, denote the set of contraction operators on L7, that is, T € [L?] and
I T, < 1. Let €5 denote the set of adjoints of operators in €, . Define the
sets €, 4, 2 and D as follows:

€ =%, M = EF, 9 =%, N %, D=%N%F...
1t is easily seen that 2 C # C ¥ and D C . By the Riesz convexity theorem
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(3, p. 525] we have ® = ();<,<%, . When the underlying space is a finite
measure space, we have & = D. However, at the present case, an example of
Brown [1, p. 370] shows that 2 C ®. Note that for each T in [L!], T%" ==
TH*, TH =T-* and | T*| = | T|* [12, Lemma 1]. It follows readily that
€, #,% and D are convex sublattices of the order complete Banach lattice
[L=] and are semigroups under multiplication. In particular, & is self-adjoint,
% = 2, in the following sense. Fach T in & as an element of ¥, has the
adjoint T* in % satisfying the equation

T g> =<{f, T*g> (fell, ge L”).

We write {f, g> for [ fg du if the integral is well-defined. It follows from the
above equation, together with 7 being an element of & that

LTl < Ul g1 A Lf I 8 Ll (s g € LY O L),

We have then | T*g |l; < |/ gl (g€ L N L®), so that T* is uniquely extended
to an element of €, , denoted also by T*. Thus T* € &. By repeating the
above argument for 7% € £ we show that the adjoint (7%)* of T* is an
element of &, and (T%)* = T, so that £ = 2%, On the other hand, it is
easy to show that D* = 2 C D, so that D is not self-adjoint.

Let €, be the set of those T'in € such that | 7| 1 = 1. Define .4, and £, by
My =M NCoand Dy ={TeZ:|T|1 =1,|T{*1 ==1}. Foreacho/ C¥,
let o/t denote the set of nonnegative elements of .&. An element of .4+
[resp. #,*] is called a sub-Markov [resp. Markov] operator, and an element
of @t [resp. 2,*] is called a doubly substochastic [resp. doubly stochastic]
operator, Each homomorphism @ from the Boolean o-algebra of measurable
sets (modulo p) into itself defines Ty € ¥+ such that T,1,, = 1,(,). We write
the indicator function of a set A by 1, . Let 5 denote the set of such opera-
tors T, . For each nonsingular measurable point mapping ¢ from (X, %, p)
into itself, that is u(p~(A)) = 0if u(4) = 0, we define T, € M+ by T, f(x) ==
f(@(x)). The set of such opeators T, is denoted by ¥. Let ¥, be the set of
operators T, € ¥ for which ¢ is an injection. A measurable point mapping
¢ : X — X is called measure preserving if u(¢p=4A4)) == pu(A4), where 4 C ¢(X),
and a measure-preserving surjection ¢ : X — X is called invertible if ¢ is a
bijection, and ¢~ is measurable. Clearly each measure-preserving map is
nonsingular. Let @ be the set of T, € ¥ for which ¢ is a measure preserving,
and let @, be the set of T, € @ for which ¢ is invertible. Note that @ C &+
and @, C 9"

For each E C X, define the operator I in 2+ by I f(x) = 1z(x) f(x). Let
3" be the family of all ordered pairs o = (4, B) of disjoint sets such that
X = AU B, u(4) =0, and w(B) = 0. Each o €} defines the operator I, in
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2, by I, =1, — Iy. Note that |I,| = I, where I denotes the identity
operator. We also write 3. for {I, : o € 3'}. Define

Ao P-3¥ V-3V, $-30. & -30,

We also define ¥’ = {I,T: ECX,Te¥}and ¥ ={I;T: ECX, Te ¥
Similarly the sets ¥, , @ and @, are defined.

For «/ C %, let ch o7 denote the convex hull of 7, and let ext .»/ denote
the set of extreme points of <. By a minor modification of the proof of
Theorem 1 in [11, p. 103] (see, also [12, Proposition 1]) we obtain

ext? = s and ext M = M Next ¥ = V.
On the other hand, we show that
@ggnext/{gextg.

Since ext.# = ¥, it is easily seen that ®C 2 N ¥ Cext 2. Define the
operatots T, , §; and S, as follows:

Tuf) = ) Tro,(0) -+ f4x ~ 2) Tiyp(3) + S5 + 1) Ty ).
S0 =57 (3) Tao) + 10 = 1) Trom(),

S/ = 2/ (FA2) Ton@ 1 /G — 1) Ta).

Let S = (S + S5)/2. We see readily that
T,e92nNn¥Y—& and TFf=Scext@ —9nY,

so that the desired conclusion follows. It is known [12, Proposition 3] that
@ = o N ¥ C ext Z when the underlying space is the unit interval.

In Section 2 we shall show that operators in ¢ and .# can be approxi-
mated by convex combinations of operators in ¥, or ¥ in the weak * operator
and the strong operator topologies of [L*]. The norm approximation theorem
is also proved for Hilbert-Schmidt operators in .Z.

It has been shown [1, 7, 14] that doubly substochastic operators Z+ can be
approximated by convex combinations of operators in @; in well-known
operator topologies of [L?] (p = 1 or 2).

In Section 3 we shall determine the subset of & that are represented by
certain signed measures defined on the product space (X x X, #F x #). We
also prove that & is the closure of @, in the weak operator topology of [L?]
and is the closed convex hull of @, in the strong* operator topology of [L?].
The norm approximation theorem is aiso proved for Hilbert-Schmidt
operators in Z.
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2. APPROXIMATIONS OF ¢ AND .4

Let (X, ,u) denote the usual Lebesgue measure space on X, == [0, 1], and
let A be a probability measure on (X, .%) that is equivalent to u, A = . In
analogy with the sets €, 6, , 4, .#, and &, we also define the subsets €(X, A),
Co(X, N), (X, D), A(X, N), Z(X, A) of [L=(X, A)] and the subsets €(X; , 1),
Co( Xq, p), AKXy, p), AfXy 1), D(Xy, p) of [L=o(X;, p)]. Let 2 be the set
of kernel operators T in .#, that is, Tg(x) = [y t{x, ) g( ) du(y) (gel”
(X, 1), where [y |{t(x, y) du( y) < 1. Similarly we define the sets J(X, A)
and (X . ). Note that the sets mentioned above are semigroups under
multiplication. We shall show that the semigroups %[resp..#, #] and
G(X,, ) [resp. A (Xy, p), A (X, u)] are isomorphic, so that the approxima-
tion theorems of €(X; , p) [resp. (X, p), #(Xy, w)] [12] give rise to those
of € [resp. .4, A'}.

It is well-known [4, p. 173; 15, p. 329] that (X, .p) and (X, A) are iso-
morphic, that is, there exists a measurable bijections ¢ : X; - X" such that
(€AY MA) (ACX) and w(B) = MEB)) (BC X,). Let T, and T,,
n ==&, be the operators defined by

Tef(x) - fe(x), fe LK, A); Tog(x) = g(n(x)), g € L(Xy, ).

In the sequel, let
P=T.and P* =T,.

It is easily seen that, for 1 <{p <C oo, P: LAX, Ay — L'(X,, ) and P*:
Le(X,, p) — L¥(X, A) are positive isometries and satisfy the equation

[ Phgdu =] fPrgdp (/< LX), g e LK, ).

LEMMA 1. % and €(X,, n) are isomorphic.

Proof. Since p == A, we shall identify L=(X, u) and € with L=(X, A) and
#(X, A), respectively. Thus it is enough to show that ¥(X, A) and (X, , u)
are isomorphic. It is straightforward to show that the map #: (X, A) —
%(X;,u) defined by A(T) = PTP* is an isomorphism of the semigroups
#(X, Ay and €(X, , p). If we write T = A(T), then T = PTP*, T = P*TP,
and || T'{. = || T'|l. . This completes the proof.

Let (X, A) and %,(X;, ) be the sets of contraction operators on L!
(X, A) and L'(X, , ), respectively. Let

u = d\du and v = du/dA.

Note that 0 << ue LY X, w), f[xudu = 1, and wv == 1.



APPROXIMATION OF CONTRACTION OPERATORS 5

LeMMA 2. 4 and (X, , u) are isomorphic.

Proof. We show first that €, and €,(X, A) are isomorphic. Define the
operators M, and M, by

M= uf', e L\(X, N; M,f = of, f& L\X, ).

It follows that M, : LYX, \) — LYX, ) and M, : L\ (X, p) — LMX, A) are
bijective, positive isometries such that M M, f = fand M M f' = f', where
fe XX, p) and f’ e L}{(X, A). Note that the adjoints M} and M} are the
identity operator on L*(X, u) = L=(X, A). We see readily that the map
k : G (X, p) — €«(X, A) defined by k(S) = M,SM, is an isomorphism. If we
write S’ = k(S), then &' = M ,SM,,, S = M ,S’M,, and{| S|, =1 S| -

It follows from the above result that .# = % and (X, ) = €F(X, D)
are also isomorphic. Since §'* = M, S*M} = S*, we have A4 = H(X, }).

We shall show that the isomorphism /A between %(X, A) and %(X;, pn)
induces that of .#(X, A) and #(X,, ). Extend the map /4 on %,(X, A) by
A(S’) == PS'P*. We see at once that the map £ is an isomorphism between
%1(X. A) and €,(X7 , p), so that the desired conclusion follows.

LemMa 3. XA and A (X, , p) are isomorphic.

Proof. It is straightforward to show that for each T'e .# = .#(X, ), T
as an element of £, has the kernel ¢(x, y) if and only if T, as an element of
A (X, A), has the kernel #'(x, y) = t(x, y) o(y). Thus, " = A (X, A).

We shall show that the isomorphism /4 between .#(X, A) and .#(X, ,p)
induces an isomorphism between (X, A) and #°(X;, u). Note that the
mapping {:(X; X Xy, p X p)—> (X X X, A X A) defined by x,y) =
(é(x), £(»)) is an invertible measure-preserving map with {~(x, y) = (n(x),
7(»). (x, )€ X x X. Let t'(x, y) be the kernel for T e #(X, A). Tt follows
that 7' = PTP* is an element of .#(X; , w), and

T4 = [ 1'(EG0). €3 &) du(y),

where ¢ € L=(X; , p) and [y [ 1'(€(x), EO)] dp(y) = [x | t'(€(x), 2)l dN(2) < 1,
so that T e (X, , n) has the kernel #(x, y) = t o {(x, y). This completes the
proof.

Let A, denote the set of those 7 € o such that its kernel is an element of
L¥X X X, p x p). The elements of J£; are called Hilbert-Schmidt operators.
Similarly we define the sets J#5(X, A) and 5(X; , n). The following example
shows that, in general, o7, # J3(X, A).
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ExAamPLE ]. Define the functions u, v, and w by

U == Z 27'7])(“ R oz Z 2“1X“ , W= ('\/j - ]) Z 2*’"/21,"" N
n=1 =1 n=1
where X,, = [n — 1, n) for n == 1. Let A be a probability measure on X such
that » == dA/du. If we define t(x, y) = 1y (x) w(y) and t'(x, y) = t(x, y) v(»),
where (x, y) € X x X, then

[t ) dury = 100, [ e ) dpt) dip(y) = (V2 — DR,
X XxX

ﬂxxx t'(x, ¥)* dNx) dN(y) =

On the other hand, we may show readily that

[I, 1 7Gpirddey ax) = [[ 1o Lo )i dps) dpd),
where fe L7(X x X, A X A), | < p << o0, and that Hy(X, A) and AH(X;, p)
are isomorphic. Thus the isomorphism between %" and (X, , p) does not
induce the isomorphism between £, and J3(X; , p).

We see readily that 2(X, A) and 2(X; , u) are isomorphic. However, the
example below shows that the map / is not an isomorphism between & and
G(X, M.

ExaMPLE 2. Let ¢(x) = x - I on X and (x) =~ x — l on Y = [1, c0).
If we define 7 = T, and S = I;T, , then both T and S are elements of & such
that || 7|, = | S|, =1 (p =1, ) and T = S*. Let u, v, and A be as in
Example 1. Define S’ == M,SM,, S~ PSP* and T -- PTP*. A simple
calculation yields S'1 == 21y, so that [y | Tg|dA = fX |g 1 S'1dA =2 [y
| g | dA, where g € L>(X, /\). It follows that || T'| 1y, = 2, so that T ¢ 2(X, )
and T ¢ (X, , p). On the other hand, we show readily that || S l1(x,» = 1.
so that S e @(X, A) and S € F(X, . ).

Let ¥(X;, p) be the set of operators T, in .#+(X,,pn) for which ¢ is a
nonsingular measurable mapping from (X, , p) into itself. Let > (X;,u) be
the family of all ordered pairs o == (4, B) of disjoint subsets of X, such that
X; =AY B, u(4) =0, and ,u,(B) 0. Let P(X, , n) be the set of operators
in #(X,,p) of the form (I, — Iy) T, where Te ¥P(X,,p) and (4, B)c 3
(X1, w). In analogy with the sets ¥, , ‘f’l , Wi and ¥, we also define the sets

V(X1 ,p), Pu(Xy, ), Pi(X,, p) and P'(X,, p). Since p = : A on X, we show
readily that ¥ [resp. ¥] and P(X,, ) [resp. ¥(X,, p)] are isomorphic and
PYP* = W(X,, u) [resp. PPP* = P(X;, w)]. Similar remarks apply for ¥,
and Wy(X; , w); P, and P, (X, . p): P, and Pi(X, , p).
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_THEOREM 1. € [resp. €7, €,'] is a compact convex set and is the closure of
Y, [resp. ¥, , ¥, in the weak * operator topology of [L*(X, u)].

Proof. The convexity of € is clear, and the compactness of € follows
from a weak-compactness principle of Kadison [5]. We shall show that ¥, is
dense in €. Given T in %, if we set T = PTP*, then T is in €(X,, ) by
Lemma 1. It follows from Theorem 1 of [12] that there exists a net (1), in

P.(X; , p) that converges to T in the weak* operator topology of [L*(X; , w)].
Note that the net (7,), defined by 7, = P*T_P belongs to ?’ For each
feLYX,pu) and ge L=(X,p) = L*(X,A), we have f'eLY(X,A), where
f' = fv, and

lim fx 7.8 dp = lim JX f'P*T.Pg d\ = lim ) Pf'T.Pg du
:f Pf'TPe d,u*J- ' P*TPg d) = ffro dp.

This completes the proof for €.

To prove the compactness of € it is enough to show that €+ is a closed
subset of €. Suppose that 7 is a point of closure of ¢ in €, and that (7,),is a
net in €+ converging to 7. For each 0 < fe L}(X, p) and 0 < g e L*(X, p),
we have {f, Tg> = lim,{f, T, g> = 0, so that T € €*. The convexity of €+ is
obvious. It follows from Theorem 1 of [10], together with PE+P* = &+
(X, ) and PP P* = WP{(X,, p), that ¥ is dense in €.

We show readily that %,* is a closed subset of €+.1t follows from Theorem 1
of [9], together with P€,+P* = € H(X; , p) and P¥, P* = ¥ (X;, w), that ¥}
is dense in %,*. This completes the proof.

It is easy to see that on the set ¥ the weak™* operator topologies of [L*
(X, w)] and [L=(X, A)] coincide. Using Theorem 1 and the proof of Theorem 2
in [12] we obtain the following result.

THEOREM 2. € [resp. 6+, €,'] is the closed convex hull of ¥, [resp.
Y., ¥,]in the strong operator topology of [L=(X, X), L'(X, A)].

THEOREM 3. % [resp. €+, €,"] is the closed convex hull of ¥ [resp. ¥, ¥]
in the strong operator topology of [L=(X, p)].

Proof. Since ¥ is a closed convex set in the strong operator topology of
[L=(X, 1)] by Theorem 1, it suffices to show that the convex hull of P, ch P,
is dense in %. For each T €%, let T = PTP* (¢ (X, , w)). By Theorem 3 of
[12], there exists a net (0,), in ch P(X, , n) that converges to T in the strong
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operator topology of [£7(X, p)]. If we define the net (Q,), by Q. P*Q_P,
then (Q.), Cch ¥. We have then for each g € L=(X, p) == L*(X, A),

1 Qﬂg - Tg Hf( - ‘:‘Qmé - Té’ i"f - Oa
where ¢ = Pg e L*=(X;, p). This completes the proof for %.

The above argument, together with [10, Theorem 3] and [9, Theorem 3],
proves the theorem for € and %,".

We see easily from Theorem | that in the weak® operator topology of
[L=(X, w)], the sets ., .#/ " and .# - are not closed, but they are sequentially
closed.

THOEREM 4. . # [resp. 4 -, .#,"] is the sequential closure of ¥, [resp.
Y1, W1l in the weak* operator topology of [L=(X, w)].

Proof. Given T e 4, if we set T == PTP*, then T e .Z(X, , p). It follows
from [12, Theorem 7] that there exists a sequence (T.), in ¥y(X; . w) that
converges to 7' in the weak* operator topology of [L=(X; , w)]. If we define
the sequence (T,), by T, — P*T,P, then (T,), C ¥,. Using the proof of
Theorem [ we prove that the sequence (7,), converges to T in the weak*
operator topology of [L=(X, n)]. This completes the proof for .#.

Similarly we obtain the desired conclusion for .#* and .#," by using
[10, Theorem 6] and [9, Theorem 4].

THEOREM 5. . [resp. M+, . # "] is the sequential closure of ch ¥,
[resp. ch W, , ch W] in the strong operator topology of [L=(X, A), L X, A)].

Proof. Let Te.# and T = PTP* (e .#(X,,p)). By Theorem 7 of [12],
there exists a sequence (7,,) in ch F,(X, , ) that converges to T in the strong
operator topology of [L=(X; , p), LA(X;, w)]. Let T, = P*T,P(n = 1,2,.).
It follows that T, ech 'f’l (n=1,2,.), and that for each ge L*(X, ) =
L2(X, p),

[(r = Deldx~ [ (T, —T)Pgidp—0 as n—c
X Xy

This completes the proof for .#.
Similar arguments, together with [10, Theorem 6] and [9, Theorem 4]
prove the desired conclusions for .#* and .#*.

THEOREM 6. For each T in A [resp. '+, H'y"), there exists a sequence
(T in ch W [resp. ch W', ch ¥ that converges to T in the uniform operator
topology of [L™(X, X), L\(X, N)].

Proof. Supoose that Te " has the kernel #(x, y). Let 7 = PTP* 1t
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follows from Lemma 3 that 7€ #(X, A) has the kernel ¢'(x, y} = t(x, y)
v(y), and that T'c #°(X; , w) has the kernel #(x, y) = t' = {(x, y). By Theorem 8
of [12], there exists a sequence (7',), in ch P(x,, w) that converges to 7' in the
uniform operator topology of [L=(X, , ), LX(X; , w)], thatis, || T, — T'|... —
0 (n — o). where

[ Tn - T lxq = sup

J AT =Ty g dusi gl < 1 g LK .
1

If we put T, = P*T,P, then T, ech Y(n—=12..). It is straightforward
to show that ! T, — Tlw, =1 T, — T'l|,.., , where

I Ty = Tiw=sup |[ (Tw—Tr g dhilgl < Lge (X, .

from which the desired conclusion for " follows.

Similar arguments, together with [10, Theorem 7] and [8, Theorem 3],
prove the theorem for "+ and #"y". This completes the proof.

We state the following norm approximation theorem.

THeoReM 7. If T'€ Mlresp. M "] is a Hilbert-Schmidt operator, then there
exists a sequence (Py), in ch ¥ [resp. ch W] such that | T — P, ll,—0 as
k — oo,

For each positive integer n, let D;* = [(i — 1) 277, i2-™) and ;" == 2"}/
Ipn(i =1,2,..). Define the operator U, by

Unf =Y {fie> e (fel*n L),
-1

It is easy to see that U,e2,", U, = Uf, and U,U,, = U,U, = U, if
n << m. Note also that U, is a projection on L2 and that U, converges to the
identity operator [ as » — co in the strong operator topology of [L”] (1 <
p < o).

Define §,, = {U,.f: fe L?. Note that §,, is a closed subspace of L2 For
each T e [L?], let T, be the compression of T'to &, , that is, T, is the operator
on $, defined by the condition T,k = U, Th (h € 9,), or equivalently by the
condition T,U,f = U,TU,f(f< L?. In terms of the orthonormal basis
(e,”); for 9, , the compression 7, is uniquely represented by the infinite
matrix (1;), where t}; = {(Te, e,>, as follows:

TAU) = Y Y ofreS e (fe L)



10 CHOO-WHAN KIM

It is easily seen that the adjoint 7% of 7, is the compression of 7+ to $,, and

THUf) = Y Y 0foe" e (feld.
i=1 j=1
Note that 3,2, (#;)* < oo for each j and ¥, (¢;;)? < oo for each i. Call T
and T* dilations (extensions) of T, and T7f to L2
Let T be an element of 2", with kernel #(x, ), and let

ta(x, ¥) == Y Y the(x) e,"(y) (n=1,2,.).

=1 j=1

It is easily seen that
SNt [l ) o) di()
i X
< [ ) ) dpdy) <

so that U,TU,, is an element of ¢, with kernel 7,(x, y). Note also that
i T - UrzTUn :|2 g \ f — rn ]?}Lz(XXX) - O as [ g ON

For each positive integer m, let M(m) be the set of m X m-real matrices (s;;)
such that Z:-”:l | 55 1 << 1 for each i, and let M(m) be the set of those matrices
(s;) in M(m) such that |s5,;| =0 or 1 (1 <i,j<m). Define M (m) =
{(5) € M(m) : Ty | 5551 = 1, for each i} and Ry(m) = My(m) N R(m). We
show readily that each matrix (s;;) in M(n) induces the bounded operator
S, 1 9, — 9, by the condition

e m

S'n(bynf) = Z Z S < fa ejn > e/f“ (/ € LZ)

i=1 §=1
We have also the relation

m "

SSULL) == X Y 55 < /. e" > ¢ (feLl?.

i==1 j=1
Note that || S, ll, = || §¥ |, < (m)'/2 Let ¥(Y) ={I;T: Te ¥}, where Y C X.
LEMMA 4. Let R, be the operator on 9, induced by a matrix (r,;) in Ry(m),

where myn = 1,2,.... Then R,, has a dilation R ¢ 'f’( Y), where ¥V U?" 1 D%,
such that | R iy << (m)*2 and RU .. f -~ R, U, f ([ L?.
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Proof. Let J ={l,2,..., m}. There exist a map o : J— J and a partition
(J1, Jy) of J such that

Fi = So(i),i (iEJl 9jEJ)’ Vi == _aa(i),i (iEJ2 ’jEJ)'

If we put £ = Uiy D" and F = UI-EJ2 D then Y =EUF. Letgp: X — X
be a map such that ¢ : D;” — D_;, (i € J) is an invertible measure-preserving
map, and ¢ : X — Y — X — Z, where Z = ¢(Y), is an invertible measure-
preserving map. Note that ¢ € ¥, and that ¢ : ¥ — Z may be neither bijective
nor measure preserving. Define R =y — Ir) T,. We see readily that
Re¥(Y)C ¥ and RU, = R,U, . To prove || R [, < (m)!72, it is enough to
show |! R|'; << m. Then, the Riesz convexity theorem, together with || R ||, <<
1, implies | R |l < (m)'/% For each A C Y and j = 1, 2,..., m, we obtain

I RlAnDJ»" h = z [ry | w4 0 DM < mu(A N DY),

7=1

so that || R1, |} << mu(A). Since || R1, ]|, = 0 for each A C X — ¥, we have
[l R|l; << m. This completes the proof.

Let M+(m) [resp. P, t(rm)] be the set of nonnegative matrices in IM(m)
[resp. M (m)]. Note that IM+(m) [resp. My*(m)] consists of m x m-sub-
stochastic [resp. stochastic] matrices. Define Rt(m) = R(m) N M+(m) and
Ry (m) = Rym) N My*(m). By a minor modification of the proof of
Lemma 4 we obtain the following corollary.

COROLLARY, Let R, be the positive operator on $, induced by a matrix
(ry) in Ri(m) [resp. Ryt(m)], where myn = 1,2,.... Then R, has a dilation
ReW(Y") [resp. W(Y)], where Y' C Y = Ui-, D, such that || R, < (m)!/?
and RU,, = R, U, .

In is known [11, Lemma 5; 10, Lemma E; 13, p. 133] that
M(m) == ch Ry(m), M+(m) = ch R+(m), My*(m) = ch RyT(m).

Thus we have at once the following result from Lemma 4, together with its
corollary.

LEMMA 5. Let S, be the operator on 9, induced by a matrix (s;;) in M(m)
[resp. Mt(m), Vi, (m)], where m,n =1, 2,.... Then S, has a dilation S in
ch W(Y) [resp. ch W(Y"), ch¥(Y)], where Y'CY = i, D such that
ISl < (m)'2 and SU,, = S,U,.

The following approximation, proved for the case where the underlying
space is the closed unit interval [6, Lemma 2.5], may be shown by a minor
modification of the argument given in [6, pp. 524, 525].
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LEMMA 6. For ecach U, , there exist measure-preserving maps U, and 0,
Sfrom X onto itself such that

KTy, & Toh# — Uy la << 270 (k= 1, 2.0,

Proof of Theorem 7. Suppose that Te %, . Let ¢ be the kernel for T and
let 7, be the kernel for U,TU, (n =1, 2,...). Given € > 0, choose a positive
integer 7 such that | t — ¢, llL2(rxx) << €/3, so that

Choose a positive integer M such that

Yo Y 1P < (/3 V2 Yo P < (/3 V2,
F==p-+ 1 je=1 J=m+1 g=1

where m == 2" M. Define the matrix (s;;) in M(m) by s,; = ¢, where | < J,
j < m. Let T, be the compression of 7to 9, , and let S, be the operator on
9, induced by the matrix (s;;). It is easily seen that

T U, — S,U, 13 < Z Z P+ Y S 8 < (e/3)
==l j==l j=m41 i=1

By Lemma 5, Sn has a dilation S in ch ¥[0, M]Cch ¥’ such that || S|, =

(m)'? and SU,, == S, U, . Choose k, such that 2% < ¢/3(mm)!/%. By Lemma 6
we can choose V' — §(Tp + Tp) with 75, e® (i =1, 2) such that |, V¥ —
Uy lly < €/3(m)2 (k > k) so that

| SU, — SV, < €/3 (k > k).
Thus we obtain from the inequalities above
T — SV¥ |, < ek > ky).
If we define P, = SV2* (k == 1, 2,...), then P, cch P[0, M]Cch ¥

A modification of the above argument, together with Lemma 5, proves the
theorem for 7'e .# 1.

3. APPROXIMATIONS OF &

Following Brown [1] and Peck [14] we call a measure A on the product
space (X X X, # x %)a doubly substochastic (d.s.s.) measure if

XA % B) < min{u(4), u(B)} (4, Be F).
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A d.s.s. measure A is called a doubly stochastic (d.s.) measure if
AA X X)=MX X A) = u(4) (4 & F).

We see readily that each d.s.s. measure is o-finite, and that no d.s. measure is
finite. The following lemma is a reformulation of Theorems 1 and 2 in [1].

LEmMMA 7. (Brown) There exists a one-to-one correspondence between
d.s.s. [resp. d.s.] measures A and d.s.s. [resp. d.s.) operators T such that

ST =[[ fem )  (fellge L), (1)

As an immediate consequence of Lemma 7 we obtain the following lemma.

LEmMMmA 8. There exists a one-to-one correspondence between finite d.s.s.
measures and d.s.s. operators T such that T ; L* — [1 N L™,

Denote by T ~ A; the correspondence defined in Lemma 7. We shall note
that such correspondence does not extend for Z. Let ¢(x) = x on X, and let
(A, B) be a partition of X such that u(4) = u(B) = 0. Define an operator T
inZby T =(,— Ig) T,.If there were a set function Aon (X X X, F xX F)
satisfying Eq. (1), then A(X X X) =<1, T1> =u(4) — p(B) = o0 — o0, a
contradiction. However, we prove the following Proposition whose statement
requires the following definition. By a signed d.s.s. [resp. d.s.] measure A we
shall mean a signed measure A on (X X X, # x %) such that the total
variation | A | of A is a d.s.s. [resp. d.s.] measure. By definition each signed
d.s.s. measure assumed at most one of the values + o0 and —oo. Let A+ and
A~ denote, respectively, the upper variation and the lower variation of A. Note
that for each signed d.s.s. measure A, both A+ and A— are d.s.s. measures.

PROPOSITION. There exists a one-to-one correspondence between those
operators T in D [resp. 2, for which at least one of T+ and T— maps L* into
L' N L= and signed d.s.s. [resp. d.s.] measures X such that

ST =[ sy (eltgel) @

In particular, At = Apy , A~ = A=, | A | = Ajqy .

Proof. Let A be a signed d.s.s. measure with finite A—. By Lemmas 7 and 8,
there exist d.s.s. operators U, V" and Wsuchthat At = Ay , A" = A, . | A| =
Aw and V:L® —I'N L>. We see readily that W= U + V. If we set
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S = U— V, then | S| < W, so that S € 2. By a minor modification of the
proof of {1, Theorem 2], there exists a unique 7 € D such that

ST =[] 1@ ddxy) (e lhge L),

We have then T = §, so that Te Z. Since T~ < U and T— < V, it follows
that 7-: L= > L' N L=, | T| < W, and that A, << A%, A <K A7, A\ <
[ A].On the other hand, if we set A; = Az and A, = A;—, then A == A, — A,
so that At << A, and A= < ), or equivalently U <X T+ and ¥ < T-. Thus,
At = Ay and A= = X, or equivalently U = T~ and V = T—. We also have
[T1 = Wandl)\i ;/\]T%

Conversely if TeZ and T-: L*— L' N L=, then T+, T- and | T'| are
d.s.s. and by Lemma 7 there exist d.s.s. measures A,(= Az+), A(=2A;-) and
A(= A satisfying Eq. (1), respectively. Note that ), is finite. Define
A=A — A,. Then A is a signed d.s.s. measure with finite A~ satisfying
Eq. (2). This completes the proof for the case of signed d.s.s. measures.

The proof for the case of signed d.s. measures follows from the following
fact. For each signed d.s.s. measure A = Ay (T'e £), Ais a signed d.s. measure
iff | A} = Ajpyis a d.s. measure iff | 7] is a d.s. operator, and at least one of
T+and T- maps L= into L* N L.

COROLLARY. There exists a one-to-one correspondence between those T in
9 for which both T+ and T— map L* into L' N L* and finite signed d.s.s.
measures A satisfying Eq. (2).

The proof is immediate from Proposition and Lemma 8.
Let L denote the family of simple functions on X having compact support.

LEMMA 9. D is a compact convex set in the weak operator topology of [L2].

Proof. The convexity of & is clear. Since the closed unit ball %, of [L?] is
compact in the weak operator topology of [L?] [3, p. 512], it remains to
show that & is a closed subset of %, . Let T be a point of closure of Z in %, .
Since the weak operator topology of [L?] restricted to &, is metrizable, there
exists a sequence (7,), in & that converges to 7. We have for f, g€ L,

IKf, Tl = KTf, gyl = lim, KTof, gl <[ fllwflglh allflhllglle. ()

Note that 7* € €, . For each f¢ L and g = sgn(Tf) 1, _, where X,, = [0, n],
we obtain from (3) that [y | Tf | du <C|| f1l; . It follows from the monotone
convergence theorem that || 7f1l; <[/ fl; (f€ L). Since L is a dense subset of
L', T is uniquely extended to an element of €, , also denoted by 7. Similarly
we show T*e€ ¥, .

We shall show now that T is extended to an element of %. It follows easily
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from (3) that for each h:|h| <1y , [g| Th|dp < p(E), where E is an
arbitrary bounded set, so that | T/# | < 1. Thus we have

| TI 1y, =sup{{ Th: [h| <1g} <1 (n=12.)

and hence | 7| 1 is defined by | 7| 1 =1lim, | T|1; (< 1). Itis easily seen
that | 7| is extended uniquely to an element of ¢+. It follows that both 7T
and T are extended to elements of €, so that T is extended to an element
of €. Similar argument leads to 7* e .

It is straightforward to show that <{T7f, g> = {f, T*g> (fell, geL™)
from which we conclude T e 2.

LemMMmA 10. D is a compact convex set in the weak™ operator topology of
[L7].

Proof. Since € is compact in the weak* operator topology of [L=] by
Theorem 1, and D is convex, it remains to show that D is a closed subset of %.
Let T be a point of closure of ® in %, and let (T,), be a net in D that con-
verges to 7. We have then

(<A Tyl = limg [<f, Togd] <1 il A ([ flle 1 g 10 (fs g € LN L),

We show readily from the above relation that | 7g ||, < | gl (g € L' N L»),
so that T is uniquely extended to an element of ¥, . Thus T e D, and the
proof is complete.

Define the L-topology on % by a subbase of consisting of sets of the form
{S:IKAHS — TYg < e}, where S, Te® and f, ge L. It is easily seen that
the L-topology is weaker than the weak™* operator topology of [L*] on ¥ and
is equivalent to the weak operator topology of [L?] on 2. It follows from
Lemma 9 that & is a closed subset of € and, hence, is compact in the weak*
operator topology of [L”]. Note that the weak™ operator topology for [L=]
is a Hausdorff topology. Since the weak operator topology of [L?] on Z is a
metrizable topology, the weak operator topology of [L2?] and the weak*
operator topology of [L*] coincide on &. We shall show that on the set D,
the L-topology is not even a 7; topology, so that it is strictly weaker than
the weak * operator topology of [L*]. Let T be a Banach limit on L=, Tf(x) =
LIM, _.f(») (fe L=), such that Tf(x) = lim, . f(y) if the right hand limit
exists [1, p. 370; 3, p. 73]. Then T is a positive linear functional such that
Tl =1and Tf = 0 (fe L), so that T D. Since g, = l[,,o) } 0 as n— o0,
Teg,=1(n=1,2,.),and TO = 0, we see T € D — 2. If we denote the zero
operator by 0, then 0 2 C D and 0 # T. Since every L-open set containing
0 also contains 7, the L-topology is not a T} topology on D.

640/28/1-2
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Following [1] we define the Peck topology on D by a subbase consisting of
sets of the form

S KAT =9 <6 KT —=S5)fg) <e(fellgel”).

By a minor modification of the proof of [I, Theorem 5], we show readily
that on D, the Peck topology is a compact Hausdorff topology and is stronger
than the weak* operator topology of [L*], so that by Lemma 10 the two
topologies coincide. In particular, the weak operator topology of [L?], the
weak* operator topology of [L*] and the Peck topology coincide on Z. 1t 1s
known [1, p. 370] that 2+ is the closure of &, in the weak operator topology
of [L?]. We prove the following theorem for &.

THEOREM 8. (i) Z is a compact convex set and is the closure of D, in the
weak operator topology of {L?].
(i) 2 is the closed convex hull of D, in the strong operator topology of
[L2].

Proof. (i) In view of Lemma 9, it is enough to show that for each T € Z,
there exists Q € @, such that

i (T— Q) gl <eli=1,2,...,m),

where f; , g; € L%, ¢ > 0, and m is a positive integer. We may assume without
loss of generality that f; and g; are bounded functions vanishing outside
[0, N], where N is a positive integer, and || f]l, < 1, || g{l. << 1. Choose a
positive integer # such that

W Unfi = fils < €/, 11 Ungi — 8ilh < €4l <i<<m).

Let ¥ ==[0, N]and S = I, TIy . Then S: L?(Y)-—> L7(Y), ]l <p < o, isa
contraction operator. It follows from [12, Lemma 10] that there exists an
operator Q" = (Iy, — Iy ) T, , where (Y7, Y,) is a partition of Y, and ¢ is an
invertible measure-preserving map from Y onto Y, such that

Define e @, by s = ¢ on Y and J(x) = x for xe X — Y. If we define
Q=Uz—1Iy) Ty, where Z =Y, U(X — Y), then Qe@, and <U,f,
TU,g> = {U,f, QU,g> (f, g € L=(Y)). 1t follows that for each i (1 << i << m),

I<fis (T — Q) gl < [fi — Unfi, Tg2| + KUnfi s T(g: — Ungi))
+ Ui — fi, QUogDN + 1<fis QU8 — 811

S20fi — Unfillh + 218 — Ungilh <e
This proves (i).
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Since convex sets have the same closure in both the weak operator and the
strong operator topologies for [L?] [3, p. 477], we obtain (ii). This completes
the proof.

It follows from Theorem 8, together with @, C @, C 2, that 2, is not
closed in the weak operator topology of [L2].

For each positive integer m, let D(m) denote the set of m x m-real matrices
(s;;) such that Z;":l | s;] <1 for each 7, and X, | 5;; | << 1 for each j. Let
Q(rn) denote the set of those matrices (s;;) in D(m) such that (| s,; |) is a per-
mutation matrix. We show readily that the operator S, : $, — 9, induced
by a matrix (s;;) in D(m) is a contraction operator, ||.S, |, < 1.

By the strong* operator topology of [L?] on & we shall mean the topology
induced by a subbase consisting of sets of the form

ST —9fl <e(T*—SHgl. <€} (f,gel?.
Let ®(Y) ={I,T: Te®,}, where YC X, and &, — {I,T: YC X, Te B,

THEOREM 9. D is the closed convex hull of ®; in the strong* operator
topology of [L?].

LeMmA 11.  Let Q,, be the operator on 9, induced by a matrix (¢;;) in Q(m)
where m,n = 1, 2,.... Then Q,, has a dilation Q € ®,(Y), where Y == i, D",
such that

QUnf: QnUnf and Q*Unf: Q:Unf (fE L2)

Proof. Let J={1,2,..,m}. There exists a bijection o:J—J and a
partition (J; , J,) of J such that

q;; = 8o i€y, J€T), iy = =8, ;((€Ts,je]).

Let ¢ € @, be a map such that o(D;,") = D}, for ieJ and ¢(x) = x for
xe D wherei¢J. Let

E = U D, F= U D", E'" = ¢(E), F' = @(F).
ied, iel,

Define Q == (I — I;) T,. Then Y =EUF and Qe ®(¥)C P;. It is
easily verified that I,T, = T,I, and I,T, = T Iy, so that T}I; = Iy’ TX,
T = 1T, and Q* = (Iy — Ip) T* € ®,(Y). We show readily that
QU, = Q,U, and Q*U, = QfU, . This completes the proof.

The following lemma is an immediate consequence of the above lemma,
together with a known result: D(m) = ch Q(m) [12, Lemma 11].

LemMMA 12, Let S, be the operator on 9, induced by a matrix (s;;) in D(m),
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where m, n == 1,2,.... Then S, has a dilation S & ch ®,(Y), where ¥ — J, | D,
such that SU, = S, U, and S*U, = SfU, .

Proof of Theorem 9. We see readily from Theorem 8 that & is closed in
the strong operator topology of [L?]. Thus, it suffices to show that for each
T in &, there exists an S in ch @] such that || 7/, — Sf; |, << € and | T%f; —
S*fil, < e(i=1,2,.,k), where f;, g, L2 (i =+ 1,2,..., k), k is a positive
integer, and ¢ > 0. We may assume without loss of generality that f; and g,
vanish outside an interval [0, N], where N is a positive integer, and || f; i, =7 |
Ilg: 1o = 1. Choose an n sufficiently large so that

G Uy — hlly < €4, || Th — U,Thly < /4, | T*h — U,T*h |, < /4.

where /1 == fi o, [ s 815005 €1 - Set m1y == 2%N, Let T, be the compression of
Tto 9, , and let (¢} be the matrix defined by th = {Te e (i,j=-1,2...).
Note that 35, | 12| < 1 for each jand 3, | r" I« 1 for each i, Choose a
positive integer m > m, such that

£

Yool el(d(my)?) (b <) <y,
i=mi 1

B

Yoo < ef(d(my) ) (I <2i << my).

Jeemeb 1

If we define an m > m-matrix (s;;) by s,; = #/; (1 <2 i.j < m), then (s,;) € D(m).
Let S, be the operator on $, induced by the matrix (s,;). By Lemma 12, S,
has a dilation S in ch (®;) such that SU, — S,U, and S*U, - S¥U, . We
have that for each & = f; ,.... [, &1 »o-s €5 -

my

ST U — S Uh R < Z S z( Z 5 E) (e

i=m+41 j=1 ESTEN

o

S} (e

J=m-1

TXUB — SFUME < Z Zl )2 < Z‘ (

j=m-+1 i=1 7-1

1t follows from the above inequalities that || Th — Sk, < € and i T*h —
S*hly, < eforh =f ..., & ,..» & . This completes the proof.

THEOREM 10. [f Te D is a Hilbert-Schmidt operator, then there exists a
sequence (P in ch @' such that || T — P, > 0ask — oo.

The proof is immediate from Lemma 12, together with a minor modifica-
tion of the proof of Theorm 7.
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