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1. INTRODUCTION

In a preceding paper [12] we have proved approximation theorems for
contraction operators on L"'[O, 1]. The purpose of the present paper is to
prove analogues of the results of [12] for contraction operators on L"'[O, (0).
We use the nonnegative real half-line for simplicity of notation; our results
hold also when the underlying space is the real line.

Let (X, ~, fL) denote the measure space consisting of the nonnegative real
half-line, the Lebesgue measureable sets and Lebesgue measure. For brevity,
the measure space (X,~, fL) will be denoted by (X, fL). On X, we shall
consider only ~-measurable real functions (modulo fL-equivaIcnce), and by
a set on X we shall always mean an element of §. Relations among sets and
functions are understood to hold modulo sets of fL-measure zero.

Assume I:S; p :S; 00, I:S; q :S; 00. We shall denote U(X,~, fL) by
LP(X, fL), or, briefly by LP. Let [£1', U] be the set of real bounded operators
from £1' into U, and let [£1'] = [£P, £P]. It is well-known that [£'1, £'1] is an
order complete vector lattice. For each T E [U'], the positive operators
T! =, Tv 0, T- = (-T) v ° and i T [ = T + T- are called the positive
part, the negative part, and the linear modulus of T, respectively (see [3, 2, 16J
for details).

Let 't'P denote the set of contraction operators on LfJ, that is, T E [LP] and
II T lip :S; 1. Let '(it denote the set of adjoints of operators in '(;'1' Define the
sets <'{j', Jlt, !@ and 1) as follows:

It is easily seen that !@ ~ JIt ~ 't' and 1) ~ 't'. By the Riesz convexity theorem
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[3, p. 525] we have :D = nl(p(",~p' When the underlying space is a finite
measure space, we have q = :D. However, at the present case, an example of
Brown [1, p. 370] shows that q ~ :D. Note that for each Tin [U], P+­
T+*, P- = T-*, and I T* I = i T 1* [12, Lemma I]. It follows readily that
't', viI, ['2 and :D are convex sublattices of the order complete Banach lattice
[L~] and are semigroups under multiplication. In particular, q is self-adjoint,
q = fr, in the following sense. Each Tin fiJ as an element of'iCl has the
adjoint T* in '6' satisfying the equation

(Tf, g) = (f, T*g) (fE U, g E un).

We write <f, g) for fx Ig dp., if the integral is well-defined. It follows from the
above equation, together with T being an element of q that

I(f; T*g)1 :::;; 11/11", II gill" 11/11111 g 1100 U; g E U n U').

We have then II T*g 111 :::;; II gill (g E Un Loo), so that T* is uniquely extended
to an element of ~l' denoted also by T*. Thus T* E q. By repeating the
above argument for T* E fiJ we show that the adjoint (T*)* of T* is an
element of q, and (T*)* = T, so that q = q*. On the other hand, it is
easy to show that :D* = [2 ~ :D, so that :D is not self-adjoint.

Let ~0be the set of those Tin 't' such that I Til = 1. Define A oand [20 by
A o = A n ~oand[2o = {TE [2: IT 11 = I, IT 1* 1 = I}. For each si C~,
let d+ denote the set of nonnegative elements of d. An element of vlt+
[resp. A o+] is called a sub-Markov [resp. Markov] operator, and an element
of [2+ [resp. [20+] is called a doubly substochastic [resp. doubly stochastic]
operator. Each homomorphism efrom the Boolean a-algebra of measurable
sets (modulo /-t) into itself defines To E ~o+ such that Tol A = IO(A)' We write
the indicator function of a set A by I A • Let.Yf' denote the set of such opera­
tors To . For each nonsingular measurable point mapping rp from (X, §, p.,)
into itself, that is p.,(rp-l(A)) = °if p.,(A) = 0, we define T'P E vlto+ by T'Pf(x) ,cc

j(rp(x)). The set of such opeators T", is denoted by lJ'. Let lJ'1 be the set of
operators T", E lJ' for which rp is an injection. A measurable point mapping
rp : X ->- X is called measure preserving if p.,(rp-l(A)) = p.,(A), where A C rp(X),
and a measure-preserving surjection rp : X ->- X is called invertible if rp is a
bijection, and rp-l is measurable. Clearly each measure-preserving map is
nonsingular. Let rJJ be the set of T", E lJ' for which rp is a measure preserving,
and let rJJl be the set of T", E rJJ for which rp is invertible. Note that rJJ C fiJI
and rJJ l C [20+'

For each EC X, define the operator Ie in [2+ by Iej(x) = IE(x)j(x). Let
L be the family of all ordered pairs a = (A, B) of disjoint sets such that
X = A U B, p.,(A) :?o 0, and p.,(B) :?o 0. Each a E L defines the operator fa in
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~O by Ia = IA - In· Note that I Ia I = I, where I denotes the identity
operator. We also writeL: for {fa: a E L:}. Define

P = L 'P, tP = I(/>,

We also define 'P' = {hT : E ex, T E 'P} and PI = {lET: E C X, T E p}.
Similarly the sets 'P; , tP' and tP~ are defined.

For <# C «f, let ch d denote the convex hull of d, and let ext d denote
the set of extreme points of .91'. By a minor modification of the proof of
Theorem I in [11, p. 103] (see, also [12, Proposition 1]) we obtain

ext «f = .# and ext vii = .A next «f = P.

On the other hand, we show that

tP ~ ~ n ext vii ~ ext ~.

Since ext.A = P, it is easily seen that tP C ~ n Pc ext~. Define the
operatots T", , SI and S2 as follows:

T",f(x) =f(4x) I[o'f)(x) +- f(4x - 2) 1[t,I)(X) +- l(x +- I) I [l,x)(x),

SII(x) = ~f( ~) I [O.2>CX) +- l(x - I) 1[2.ao)(x),

I (x+-2)Sd(x) 2/ 4 I [O.2)(X) +- l(x - I) I [2,<x;J(x).

Let S = (Sl +- S2)/2. We see readily that

and r: = S E ext ~ - !?iJ n P,

so that the desired conclusion follows. It is known [12, Proposition 3] that
(fJ = f:Y! n Pc: ext ~ when the underlying space is the unit interval.

In Section 2 we shall show that operators in «f and .A can be approxi­
mated by convex combinations of operators in PI or P in the weak* operator
and the strong operator topologies of [Lao]. The norm approximation theorem
is also proved for Hilbert-Schmidt operators in .A.

rt has been shown [I, 7, 14] that doubly substochastic operators 9' can be
approximated by convex combinations of operators in (/>1 in well-known
operator topologies of [£1'J (p = I or 2).

In Section 3 we shall determine the subset of !?iJ that are represented by
certain signed measures defined on the product space (X x X, :? x .~) We
also prove that ~ is the closure of (fJl in the weak operator topology of [D]
and is the closed convex hull of (fJ~ in the strong* operator topology of [D].
The norm approximation theorem is also proved for Hilbert-Schmidt
operators in ~.
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2. ApPROXIMATIONS OF (6 AND jl

Let (Xl 'fL) denote the usual Lebesgue measure space on Xl =c [0, 1], and
let A be a probability measure on (X, .'Y) that is equivalent to fL, A 0= fL. In
analogy with the sets 'fl, 't~o , 0/11, ./#toand g, we also define the subsets 'fleX, ,\),
'flo(X, A), .,ft(X, A), jIll', ,\), g(X, .\) of [U\X, A)] and the subsets '6'(Xl , fLY,
'flO(X1 , fL), .fl(X1 , fL), Alo(Xt ,fL), g(X1 , fL) of [Lw(Xl ,fL)]. Let:% be the set
of kernel operators T in At, that is, Tg(x) = Ix t(x, y) g( y) dfL (Y) (g E L'
(X, fL», where Jx I t(x, y)1 dfL( y) ~ 1. Similarly we define the sets )f'(X, A)
and )f"(Xl ,fL). Note that the sets mentioned above are semigroups under
multiplication. We shall show that the semigroups 'fl[resp. jt, .:;('] and
'fl(Xl ,fL) [resp. oll(Xl , fL), :%(X1 , fL)} are isomorphic, so that the approxima­
tion theorems of'(,'(X1 , fL) [resp. ..ft(X1 , fL), .:;('(X1 , IL)] [12] give rise to those
of't (resp. .11, Xl

It is well-known [4, p. 173; 15, p. 329] that (Xl' fL) and (X,'\) are iso­
morphic, that is, there exists a measurable bijections g : Xl'" X such that
fL(f·1(A)) ;\(A) (A C X) and fL(B) = AWB» (B C Xl)' Let T< and Tn'
YJ c= t-l. be the operators defined by

Tj(x) f(~"(x»,IE C(X, .\); T~g(x) = g(1/(x», g E U(X1 ,fL)'

In the sequel, let

It is easily seen that, for 1 'S;; p ~ 00, P: U(X, X) ---- U(XI ' fL) and p* :
D'(X1 , fL) ~.,. U(X, A) are positive isometries and satisfy the equation

(f E U-'(X, A), g E P(X, fL».

LEMMA I. '(;. and 'fl(Xl ,fL) are isomorphic.

Proof Since fL eCce 1\, we shall identify uo(X, fL) and '(,' with U'(X, :I.) and
'fleX, :I.), respectively. Thus it is enough to show that '(,'(X, i\) and '(,'(XI ' fL)
are isomorphic. It is straightforward to show that the map h : 'fleX, ,\) ..-..
'fl(Xl ,fL) defined by h(T) = PTP* is an isomorphism of the semigroups
'?i(X, A) and 'if(X1 , fL). If we write T = h(T), then T = PTP*, T = P*TP,
and II T Ilx== 11 f 110: . This completes the proof.

Let '/fleX, A) and <tf\(Xl ,fL) be the sets of contraction operators on U
(X, A) and U(X1 , fL), respectively. Let

and v = dfLld.\.

Note that 0 < U E U(X, fL), Jx u dfL = I, and uv I.
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LEMMA 2. A and A(XI , p,) are isomorphic.

Proof We show first that ~l and ~1(X, A) are isomorphic. Define the
operatorsMu and M v by

Muf' = uj', j'EU(X, A); Mvf= Vf,fE U(X, p,).

It foHows that M u : U(X, A) ~ U(X, p,) and M v : LI(X, p,) ~ U(X, A) are
bijective, positive isometries such that MuMvf = f and M vM uf' = f', where
fE U(X, p,) and f' E U(X, A). Note that the adjoints M~ and M; are the
identity operator on Loo(X, p,) = U)(X, A). We see readily that the map
k : ~l(X, p,) ~ Yi'l(X, A) defined by k(S) = MvSMu is an isomorphism. If we
write S' = k(S), then S' = MvSM" , S = MuS'Mv , and II Sill = II S' Ill'

It follows from the above result that A = ~t and A(X, A) = ~t(X, A)
are a][so isomorphic. Since 5'* = M"S*M; = S*, we have ~t = A(X, A).

We shall show that the isomorphism h between ~(X, A) and ~(Xl' p,)
induces that of A(X, A) and A(XI ,p,). Extend the map h on ~l(X, A) by
h(S') = PS'P*. We see at once that the map h is an isomorphism between
Yi'l(X, A) and ~l(Xl , p,), so that the desired conclusion follows.

LEMMA 3. rand r(Xl , p,) are isomorphic.

Proof It is straightforward to show that for each T E ~t = vIt(X, A), T
as an element of r, has the kernel t(x, y) if and only if T, as an element of
.X"(X, A), has the kernel t'(x, y) = t(x, y) v(y). Thus, r = rex, A).

W~: shall show that the isomorphism h between vIt(X, A) and vIt(Xl ,p,)
induces an isomorphism between rex, A) and r(xl , p,). Note that the
mapping ,: (Xl X Xl' P, X p,) ~ (X X X, A X A) defined by ,(x, y) =

(g(x), g(y) is an invertible measure-preserving map with '-lex, y) = (ry(x),
7J(Y)), (x, y) E X X X. Let t'(x, y) be the kernel for T E rex, A). It follows
that 'l' = PTP* is an element of vIt(XI , p,), and

whereg E L"'(Xl , p,) and Ix I t'(g(x), g(y)) Idp,(y) = Ix I t'(g(x), z)1 dA(Z) ~ 1,
_ 1 A

so that T E .:;t'"(Xl , p,) has the kernel t(x, y) = to ,(x, y). This completes the
proof.

Let .Jf; denote the set of those T E r such that its kernel is an element of
V(X X X, P, X p,). The elements of.Jf; are called Hilbert-Schmidt operators.
Similarly we define the sets .Jf;(X, A) and .Jf;(Xl , p,). The following example
shows that, in general, .Jf; =1= .Jf;(X, A).
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EXAMPLE I. Define the functions u, D, and IV by

l' " 2"1L X n ,

n=J

00

\I' (VL - I) I 2-nj2Ixn'
n=l

where X" = [n - 1, n) for n ~ 1. Let ,\ be a probability measure on X such
that U =~ d,\jdp,. If we define t(x, y) 0= Ix (x) w(y) and t'(x, y) = t(x, y) D(Y),

1

where (x, y) E X X X, then

Ix t(x, y) dp,(y) = lx/x), JI t(x, y)2 dp,(x) dp,(y) = (VL - 1)2,
xxx

If (x, y)2 d'\(x) d'\(y) = 00.
xxx

On the other hand, we may show readily that

If if(x, y)I" d'\(x) d'\(y) c..= rr If a ~(x, Y)II' dp,(x) dp,(y),
Xxx ., X,XX,

where f E U(X X X, ,\ x ,\), I ~ P < 00, and that jf~(X, ,\) and .;f:;(XI ,p,)
are isomorphic. Thus the isomorphism between ,it and Jt"(XI , p,) does not
induce the isomorphism between .;f:; and .;f:;(XI , p,).

We see readily that ~(X, ,\) and ~(XI , p,) are isomorphic. However, the
example below shows that the map h is not an isomorphism between ~ and
~(X, '\).

EXAMPLE 2. Let <p(x) = x~- I on X and <p(x) x - I on Y = [I, 00).
If we define T = Tcp and S I yTcp , then both T and S are elements of~ such
that 11 nl) = II S lip I (p = I, 00) and T = S*. Let u, D, and ,\ be as in
Example 1. Define S' ,= M"SM Il , S Psp* and t PTP*. A simple
calculation yields S'l =,,21 y, so that Ix 1 Tg I d'\ == Ix Ig IS'ld'\ = 2 Iy
Ig I d,\, where g E L"(X, '\). It follows that II nL1(X,A) = 2, so that T f ~(X, ,\)
and t f ~(XI , p,). On the other hand, we show readily that II S lio(x,A) =~,

so that S E ~(X, ,\) and S E ~(XI ' p,).
Let lJI(XI ,p,) be the set of operators Tcp in ,-«T(XI ,p,) for which <p is a

nonsingular measurable mapping from (Xl' p,) into itself. Let L (Xl' p,) be
the family of all ordered pairs (J' == (A, B) of disjoint subsets of Xl such that
Xl = A u B, p,(A) ~ 0, and p,(B) ~ 0, Let p(Xl , p,) be the set of operators
in vI/(Xl , p,) of the form (fA - IE) T, where T E lJI(Xl ,p,) and (A, B) E L
(Xl' p,). In analogy with the sets lJIl , PI , lJI~ and P~ we also define the sets
lJII(XI ,p,), PI(XI ,p,), lJI~(Xl , p,) and p'(Xl , p,). Since p, = A. on X, we show
readily that lJI Crespo p] and lJI(Xl ,p,) Crespo p(Xl , p,)] are isomorphic and
plJlp* =, lJI(XI , p,) [resp. pPp* =, p(XI , p,)]. Similar remarks apply for lJI]
and lJI](Xl ,p,); p] and Pl(X] , p,); lJI; and lJI~(X] , p,).
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Tm~OREM 1. C(l [resp. C(l+, C(lo+] is a compact convex set and is the closure of
'PI [resp. P; , PI] in the weak* operator topology of[Lx(X, fL)].

Proof The convexity of ~ is clear, and the compactness of C(l follows
from a weak-compactness principle of Kadison [5]. We shall show that 'PI is
dense in C(l. Given Tin C(l, if we set t = PTP*, then t is in C(l(Xl ,fL) by
Lemma 1. It follows from Theorem I of [12] that there exists a net (t~)~ in
'Pl(Xl ,fL) that converges to T in the weak* operator topology of [Loo(Xl ,fL)]'
Note that the net (T~)~ defined by Tcx = P*T~P belongs to 'Pl' For each
fE V(X, fL) and g E Loo(X, fL) = ['L(X, ,\), we have l' E V(X, ,\), where
l' = fv, and

=~ J Pj'TPg dfL = J j'P*TPg d'\ = JfTg dfL·
x, X x

This completes the proof for ~.

To prove the compactness of C(lT it is enough to show that C(l+ is a closed
subset of~. Suppose that T is a point of closure of~··· in ~, and that (T~)~ is a
net in C(l+ converging to T. For each 0 ~fE V(X, fL) and 0 ~ g E uc(X, fL),
we have (J, Tg) = lim~(J, T~ g) ;): 0, so that T E~. The convexity of C(l+ is
obvious. It follows from Theorem 1 of [10], together with pC(l+p* = C(l+
(Xl' fL) and pp;p* = lJI;(Xl ,fL), that P; is dense in C(l.'.

We show readily that C(lo+ is a closed subset of'?i'+.lt follows from Theorem 1
of [9], together with PC(lo+P* = C(lo+(Xl 'fL) and PlJIjP* =c Pl(Xl ,fL), that lJIl
is dense in ~oe. This completes the proof.

It is easy to see that on the set ~ the weak* operator topologies of [LX
(X, fL)] and [Lx(X, ,\)] coincide. Using Theorem 1 and the proof of Theorem 2
in [12] we obtain the following result.

THEOREM 2. ~ [resp. ~+, ~Ol] is the closed convex hull of 'PI [resp.
lJI;, lJIj ] in the strong operator topology of[LX(X, ,\), VeX, '\)].

THEOREM 3. ~ [resp. C(l+, ~o+] is the closed convex hull of'P [resp. P', P]
in the strong operator topology of [L"'(X, fL)].

Proof Since ~ is a closed convex set in the strong operator topology of
[L"'(X, fL)] by Theorem 1, it suffices to show that the convex hull of 'P, ch 'P,
is dense in C(l. For each T E~, let t = PTP* (E ~(Xl ,fL)). By Theorem 3 of
[12], there exists a net (0"),, in ch 'P(XI , fL) that converges to T in the strong
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operator topology of [U(XI , ,u)]. If we define the net (Q"),, by Q" p*Q'l1P'
then (Q,,)'l1 C ch 'P. We have then for each g E L"'(X, ,u) == L£(X, A),

! Q"g -~ Tg lief == I: Q'l1/; -- 1'..§; liT --+ 0,

where g = Pg E U-(X1 , ,u). This completes the proof for 'li.

The above argument, together with [10, Theorem 3] and [9, Theorem 3],
proves the theorem for Yf+ and 'lio I.

We see easily from Theorem I that in the weak* operator topology of
[Loo(X, ,u)], the sets .It, -ft and ,Ito are not closed, but they are sequentially
closed.

TI-iOEREM 4. JlI [resp. Jll ,,I/o I] is the sequential closure of 'PI [resp.
'P{ , 'PI] in the l,veak* operator topology of [U:(X, ,u)].

Proof Given T E ,It, if we set T = PTP*, then T E .Af/(X1 , f-t). 11 follows
from [12, Theorem 7] that there exists a sequence (Tn)n in 'PI (X1 ,,u) that
converges to T in the weak* operator topology of [L"'(X1 , ,u)]. If we define
the sequence (Tn)n by Tn = P*TnP, then (Tn)n C PI' Using the proof of
Theorem 1 we prove that the sequence (Tn)n converges to T in the weak*
operator topology of [£oo(X, ,u)]. This completes the proof for A.

Similarly we obtain the desired conclusion for ,It and ,110 by using
[10, Theorem 6] and [9, Theorem 4].

THEOREM 5. ,II [resp. ,It " ,1(0 1] is the sequential closure of ch 'PI

[resp. ch 'P{ , ch 'PI] in the strong operator topology o][£"-'(X, A), VeX, A)].

Proof Let T E ,It and t = PTP* (E .-It(Xl , f-t)). By Theorem 7 of [12],
there exists a sequence (Tn) in ch P1(X1 ,,u) that converges to l'in the strong
operator topology of [£00(X1 , ,u), £1(X1 , ,u)]. Let Tn = p*tnp (n = 1,2,...).
It follows that Tn E ch PI (n = 1,2,...), and that for each g E £"J(X, A)=
Loo(X, ,u),

Ix I(Tn - T) g I dA f 1(1'" - 1') Pg 1d,u --+ 0
Xl

as 1/ --+ 00.

This completes the proof for A.
Similar arguments, together with [10, Theorem 6] and [9, Theorem 4]

prove the desired conclusions for A+ and . Ito I.

THEOREM 6. For each T in ;f [resp. ;f+, ;fOi], there exists a sequence
(Tn)n in ch P [resp. ch 'P', ch 'P] that converges to T in the zmiform operator
topology of [£oo(X, A), £1(X, A)].

Proof Supoose that TE oX has the kernel I(x, y). Let t PTP*. It
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follows from Lemma 3 that T E Jf'(X,'\) has the kernel t'(x, y) = t(x, y)
v(y), and that T E Jf'(X1 ,p.) has the kernel lex, y) = t' 0 ,(x, y). By Theorem 8
of [12], there exists a sequence (Tn)n in ch 1J1(X1 , p.) that converges to t in the
uniform operator topology of[Lw(X1 , p.), £l(X1 , p.)], that is, I; t n - t Ilx,1 --+

o (n -~ (0), where

If we put Tn = P*TnP, then Tn E ch 'P (n = 1,2,...). It is straightforward
to show that 1Tn - Tllw.1 = II Tn - 1'11-",1, where

II Tn - I' x1= sup If\' I(Tn - T) g I d,\: II g I!",

from which the desired conclusion for Jf' follows.
Similar arguments, together with [10, Theorem 7] and [8, Theorem 3],

prove the theorem for Jf'+ and Jf'ol-. This completes the proof.
We state the following norm approximation theorem.

THEOREM 7. If T E uIt[resp. uIt+] is a Hilbert-Schmidt operator, then there

exists a sequence (Plch in ch 'P' [resp. ch P'] such that II I' - PIc 112 --+ 0 as
k --+ OJ.

For each positive integer n, let D;" = [(i - 1) 2-n, i2-n) and ein = (2n)1/2

I Din (i = 1,2'00')' Define the operator Un by

00

U f= " (I' e,n> e,nn. L-../' t 'l

i=l

It is easy to see that Un E .@o+, Un = U;, and UnUm = U",Un = Un if
n ~ m. Note also that Un is a projection on V and that Un converges to the
identity operator I as n --+ 00 in the strong operator topology of [U] (l ~
p < OJ).

Define ~n = {Unf:fE V}. Note that ~n is a closed subspace of V. For
each T E [V], let Tn be the compression of T to ~n , that is, Tn is the operator
on ~n defined by the condition Tnh = UnTh (h E ~n), or equivalently by the
condition TnUnf = UnTUnf(fE V). In terms of the orthonormal basis
(ein)i for ~n, the compression Tn is uniquely represented by the infinite
matrix (ti~)' where ti~ = <Tejn, ein>, as follows:

Tn(Unf) = I L t~<f, e/'> ei
n

i=l j=l
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It is easily seen that the adjoint T':; of Tn is the compression of T* to ~)n and

I I t~(f; ej
i",-,l j=l

Note that L:1 (t jj)2 < 00 for each.i and L;:1 (tij)2 < 00 for each i. Call T
and T* dilations (extensions) of Tn and r:: to V.

Let T be an element of :;!t2 with kernel t(x, y), and let

tn(x, y) = I I t~e/,{x) e/(y)
i~1 j~1

It is easily seen that

(n == I, 2, ...).

'X.'

" " ' nL. L. I tij
/=1 j=l

so that UnTUn is an element of Jf'z with kernel tnC" y). Note also that

as n ---+ 'lJ.

For each positive integer m, let ffil(m) be the set of m x m-real matrices (s,j)

such that L;:1 1 S;j I :s:: 1 for each i, and let 9l(m) be the set of those matrices
(Sij) in ffil(m) such that [Sij [ = 0 or I (l :s:: i,j :s:: m). Define ffilo(m) =
{(s;J E ffil(m) : L;",1 i sij I = I, for each i} and 9lo(m) = ffilo(m) n 91(m). We
show readily that each matrix (Sij) in 9Jl(m) induces the bounded operator
Sn : bn ---+ bn by the condition

m nt

Sn(U"j) = I I S;j <j;
£=1 j=1

We have also the relation

111- rn

S:(Unj) 'c.•• I I Sji <.J:
;_01 j~1

(jE U).

(jE U).

Note that 11 Sn 11 2 = S~ '12 :s:: (m)1/2. Let p( Y) = {Iy T: T E p}, where Y C x.

LEMMA 4. Let R n be the operator on bn induced by a matrix (rij) in ~H(lm),

where m, n = ], 2, .... Then Rn has a dilation R E p( Y), where Y U;" 1 D;",
such that 11 R liz < (m)1/2 and RU,J RnU,JUE U).
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Proof Let J = {I, 2,... , m}. There exist a map a : J ---+ J and a partition
(11 , J'I) of J such that

If we put E = UiEJ Din and F = UiEJ Din, then Y = E u F. Let f{J : X ---+ X
1 2

be a map such that f{J : Din ---+ D:(i) (i E J) is an invertible measure-preserving
map, and f{J: X - Y ---+ X - Z, where Z = f{J(Y), is an invertible measure­
preserving map. Note that f{J E P, and that f{J : Y ---+ Z may be neither bijective
nor measure preserving. Define R = (IE - IF) T(p' We see readily that
R E Pi( Y) C p, and RUn = RnUn . To prove /I R Ib ~ (m)1/2, it is enough to
show I; R 1:1 ~ m. Then, the Riesz convexity theorem, together with II R 1100 ~
1, implies :1 R 1'2 ~ (m)1/2. For each A C Yandj = 1,2,... , m, we obtain

m

RI AnDt 111 = I I rij I fL(A n Djn) ~ mfL(A n D/),
i~l

so that II RIA III ~ mfL(A). Since II RIA III = 0 for each A ex - Y, we have
II Rill :'S= m. This completes the proof.

Let Wl+(m) [resp. Wlo+(m)] be the set of nonnegative matrices in Wl(m)
[resp. IDlo(m)]. Note that WlI(m) [resp. Wlo+(m)] consists of m X m-sub­
stochastic [resp. stochastic] matrices. Define 91+(m) = 91(m) n 9J1+(m) and
91o+(ml = 91o(m) n Wlo+(m). By a minor modification of the proof of
Lemma 4 we obtain the following corollary.

COROLLARY, Let R n be the positive operator on tJn induced by a matrix
(r ij) in 91+(m) [resp.91o+(m)], where m, n = 1,2,.... Then Rn has a dilation
R E P(Y') [resp. P(Y)], where Y' C Y= U::1 Din, such that II R /12 ~ (m)1/2
and RUn = RnUn .

In is known [11, Lemma 5; 10, Lemma E; 13, p. 133] that

Wl(m) == ch 91o(m), Wl+(m) = ch 91+(m), IDlo+(m) = ch 91o+(m).

Thus we have at once the following result from Lemma 4, together with its
corollary.

LEMMA 5. Let Sn be the operator on tJn induced by a matrix (Sij) in Wl(m)
[resp. 9Jl+(m), Wlo-I(m)], where m, n = 1,2,.... Then Sn has a dilation S in
ch p( Y) [resp. ch P( Y'), ch P( Y)], where Y' C Y = U~_l Din, such that

liS 112 ~ (m)1/2 and SUn = SnUn'

The following approximation, proved for the case where the underlying
space is the closed unit interval [6, Lemma 2.5], may be shown by a minor
modification of the argument given in [6, pp. 524, 525].
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LEMMA 6. For each Un, there exist measure-preserving maps OJ and Ii~

from X onto itself such that

(k .~.. 1,2•... ).

Proof of Theorem 7. Suppose that T E :%2 • Let t be the kernel for T and
let tn be the kernel for Un TUn (n = 1,2,...). Given E :> 0, choose a positive
integer n such that :1 t - tn IIL2(XXX) < Ej3, so that

Choose a positive integer M such that

C!

L L 1t~ I~ < (E/3 v'2)2,
i''''-III+ 1 J,,,,l

00

I I 1tFi 12 < (E/3 \/2)~,
j=1n+l i=l

where m == 2" M. Define the matrix (.I'ij) in ml(m) by Sij = ti~ • where I i,
.i ~ m. Let Tn be the compression of T to f'n , and let Sn be the operator on
f'n induced by the matrix (Sij). It is easily seen that

i TnUn - SnUn !i~ L L' t;~ 1
2 + I L I t,r~ :2 < (E/3t

i",~m+l j=~l j=m-+-l i=l

By Lemma 5, Sn has a dilation S in ch prO, M] C ch pi such that liS 112
(m)1/2 and SUn == SnUn . Choose k o such that 2- ko < Ej3(m)1/2. By Lemma 6
we can choose V -= ·~(Te + To) with Tg E tP (i == I, 2) such that V2J,-

... 1 2 1

Un 11~ < Ej3(m)1/2 (k k o), SO that

Thus we obtain from the inequalities above

If we define P k SV2I. (k =, 1,2,...), then P k E ch prO, M] C ch P'.
A modification of the above argument, together with Lemma 5. proves the

theorem for T E u#t .

3. ApPROXIMATIONS OF E0

Following Brown [I] and Peck [14] we call a measure A on the product
space (X x X, ff x .~) a doubly substochastic (d.s.s.) measure if

A(A x B) ~ min{fL(A), fL(B)} (A, BE?).
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A d.s.s. measure ,\ is called a doubly stochastic (d.s.) measure if

'\(A x X) = '\(X x A) = fL(A) (A E ff).

13

We see readily that each d.s.s. measure is a-finite, and that no d.s. measure is
finite. The following lemma is a reformulation of Theorems I and 2 in (1].

LEMMA 7. (Brown) There exists a one-to-one correspondence between
d.s.s. [resp. d.s.] measures ,\ and d.s.s. [resp. d.s.] operators T such that

(/; Tg) = II I(x) g(y) dll(x, y)
xxx

(fE U, g E Lac). (1)

As an immediate consequence of Lemma 7 we obtain the fOllowing lemma.

LEMMA 8. There exists a one-to-one correspondence between finite d.s.s.
measures and d.s.s. operators T such that T: Lac -~ Ll n L'''.

Denote by T ,....., '\T the correspondence defined in Lemma 7. We shall note
that such correspondence does not extend for flJ. Let <p(x) = x on X, and let
(A, B) be a partition of X such that fL(A) = fL(B) = 00. Define an operator T
in flJ by T = (/.4 - Is) T<p. If there were a set function ,\ on (X X X, ff x ff)
satisfying Eq. (I), then '\(X x X) = (1, TI) = fL(A) - fL(B) = 00 - 00, a
contradiction. However, we prove the following Proposition whose statement
requires the following definition. Bya signed d.s.s. [resp. d.s.] measure II we
shall mean a signed measure ,\ on (X X X, ff X ff) such that the total
variation 1111 of ,\ is a d.s.s. [resp. d.s.] measure. By definition each signed
d.s.s. measure assumed at most one of the values + 00 and - 00. Let 11+ and
11- denote, respectively, the upper variation and the lower variation of II. Note
that for each signed d.s.s. measure II, both III and ,\- are d.s.s. measures.

PROPOSITION. There exists a one-to-one correspondence between those
operators Tin flJ [resp. flJo] for which at least one of r:- and T- maps Lac into
L1 n L 00 and signed d.s.s. [resp. d.s.] measures ,\ such that

<.f, Tg) = If I(x) g(y) d'\(x, y)
xxx

(fE D, g E LOO). (2)

In particular, ,\+ = '\T+ , ,\- = IIT- , I ,\ I = '\ITI .

Proof. Let II be a signed d.s.s. measure with finite '\-. By Lemmas 7 and 8,
there exist d.s.s. operators U, Vand W such that ,\+ = lI u ,11- = II v . 1111 =
II w and V: Loo -+ D n Loo. We see readily that W = U + V. If we set
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s c= U - V, then IS I :s;; W, so that S E:». By a minor modification of the
proof of [1, Theorem 2], there exists a unique T E !) such that

<f, Tg) J'j' f(x) g(y) dA(x, y)
xxx

We have then T = S, so that T E fij. Since T· :s;; U and T- :s;; V, it follows
that T-: L'"' -+ D (\ U, I T I 'S; W, and that ATe < A', AT- :s;; A-, AITI <
I A I . On the other hand, if we set Al =c AT+ and A2 = AT- , then A ccc Al - A2 ,

so that A+ < Al and A- :s;; A2 , or equivalently U <: T and V < T-. Thus,
A+ = Al and A- = A2 , or equivalently U =c T and V == T-. We also have
I T I = Wand I A ! "-= A]Ti .

Conversely if T E fij and T- : L'" -+ D (\ L'fJ, then T', T- and I T I are
d.s.s. and by Lemma 7 there exist d.s.s. measures Al(= AT+), A2( =A1 -) and
A3( = AITI) satisfying Eq. (I), respectively. Note that A2 is finite. Define
A = Al - A2 • Then A is a signed d.s.s. measure with finite A- satisfying
Eq. (2). This completes the proof for the case of signed d.s.s. measures.

The proof for the case of signed d.s. measures follows from the following
fact. For each signed d.s.s. measure A = AT (T E g), Ais a signed d.s. measure
iff I A I = AITI is a d.s. measure iff ! T I is a d.s. operator, and at least one of
T+ and T- maps L 00 into U' (\ U.

COROLLARY. There exists a one-to-one correspondence bet,veen those Tin
fij for which both TI- and T- map U into D (\ U' and finite signed d.s.s.
measures A satisfying Eq. (2).

The proof is immediate from Proposition and Lemma 8.
Let L denote the family of simple functions on X having compact support.

LEMMA 9. fij is a compact convex set in the weak operator topology of [V].

Proof The convexity of fij is clear. Since the closed unit ball ~2 of [L2] is
compact in the weak operator topology of [V] [3, p. 512], it remains to
show that fij is a closed subset of ~2 • Let T be a point of closure of fij in ~2 •

Since the weak operator topology of [V] restricted to ~2 is metrizable, there
exists a sequence (Tn)n in fij that converges to T. We have for f, gEL,

I<f, T*g)1 = I<Tf, g)1 = limn I<Tnf, g)1 <: Ilflloo II g III A Ilf:[l II gila:· (3)

Note that T* E ~2' For eachfE Land g = sgn(Tf) Ix , where X n == [0, n],
we obtain from (3) that Ix I Tfl dfL :s;; Ilflll . It follow; from the monotone
convergence theorem that liTflll :s;; liflll (IE L). Since L is a dense subset of
D, T is uniquely extended to an element of ~l , also denoted by T. Similarly
we show T*E~l'

We shall show now that T is extended to an element of~. It follows easily
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from (3) that for each It : I hi::;; Ix , IE I Tit I dfJ- ::;; fJ-(E), where E is an
arbitrary bounded set, so that Th I ~ 1. Thus we have

I Tllxn = sup{i Th I: I h I ~::; Ix)::;; 1 (n = 1,2,... ),

and hence I T [I is defined by i Til = limn I T 1 IX
n

(::;; 1). It is easily seen
that I T I is extended uniquely to an element of '6'+. It follows that both T+
and T- are extended to elements of '6", so that T is extended to an element
of '6'. Similar argument leads to T* E '6'.

It is straightforward to show that (Tf, g)= (f, T*g) (IE U, g EU))
from which we conclude T E ct?Z.

LEMMA 10. :D is a compact convex set in the weak* operator topology of
rue].

Proof Since '6' is compact in the weak* operator topology of [L"'] by
Theorem 1, and:D is convex, it remains to show that:D is a closed subset of '6'.
Let T be a point of closure of :D in '6', and let (Ta)a be a net in :D that con­
verges to T. We have then

I(f, Tg)1 = lim" 1<1; Tog) I ::;; Uillil g 110') A ilfll", II gill (f, g EUn Ul

We show readily from the above relation that Ii Tg 111 ::;; II gill (g EUn LOO),
so that T is uniquely extended to an element of '6'1 . Thus T E:D, and the
proof is complete.

Define the L-topology on '6 by a subbase of consisting of sets of the form
{S : I<,j~ (S -- T) g)1 < E}, where S, T E '6' and f, gEL. It is easily seen that
the L-topology is weaker than the weak* operator topology of [Loo] on '6' and
is equivalent to the weak operator topology of [V] on 1$. It follows from
Lemma 9 that ~ is a closed subset of '6' and, hence, is compact in the weak*
operator topology of [Loo]. Note that the weak* operator topology for [Loc]
is a Hausdorff topology. Since the weak operator topology of [V] on 1$ is a
metrizable topology, the weak operator topology of [V] and the weak*
operator topology of rue] coincide on f£. We shall show that on the set :D,
the L-topology is not even a TI topology, so that it is strictly weaker than
the weak* operator topology of [LOO]. Let T be a Banach limit on Loo, Tf(x) =

LIMy_,,[(Y) (IE L"'), such that Tf(x) = limY+",f(Y) if the right hand limit
exists [1, p. 370; 3, p. 73]. Then T is a positive linear functional such that
T1 ~~ I and Tf = 0 (IE U), so that T E :D. Since gn = I [n,,,,) ~ 0 as n -->- 00,

Tgn = 1 (n = 1,2,...), and TO = 0, we see TE:D -~. If we denote the zero
operator by 0, then 0 E ~ C :D and 0 ¥= T. Since every L-open set containing
oalso contains T, the L-topology is not a TI topology on :D.
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Following [1] we define the Peck topology on :1) by a subbase consisting of
sets of the form

{S: I<f, (T ~ S) g)1 < E, 1«T - S)f, g)[ < E} (fE U, g E UJ

By a minor modification of the proof of [I, Theorem 5], we show readily
that on :1), the Peck topology is a compact Hausdorff topology and is stronger
than the weak* operator topology of [L"t so that by Lemma 10 the two
topologies coincide. In particular, the weak operator topology of [V], the
weak* operator topology of [U] and the Peck topology coincide on :». It is
known [1, p. 370] that :»+ is the closure of WI in the weak operator topology
of [V]. We prove the following theorem for :».

THEOREM 8. (i):» is a compact convex set and is the closure of <1>1 in the
weak operator topology of [V].

(ii) :» is the closed convex hull of <1>1 in the strong operator topology of
[£2].

Proof (i) In view of Lemma 9, it is enough to show that for each T E :»,
there exists QE <1>1 such that

1(1;, (T - Q) g;)1 < E (i = 1,2,... , m),

wherej;, gi E £2, E > 0, and m is a positive integer. We may assume without
loss of generality that j; and gi are bounded functions vanishing outside
[0, N], where N is a positive integer, and Ilflloo ~ 1, II g 1100 ~ 1. Choose a
positive integer n such that

Let Y = [0, N] and S = ly Tly . Then S : U'( Y) --+ U'( Y), 1 ~ p ~ 00, is a
contraction operator. It follows from [12, Lemma 10] that there exists an
operator Q' = (ly, - ly) T" , where (Y1 , Y2) is a partition of Y, and ep is an
invertible measure-preserving map from Yonto Y, such that

Define ifi E W, by if; = ep on Y and if;(x) = x for x E X - Y. If we define
Q = (lz - I y ) T,p, where Z = Y1 U (X - Y), then Q E <1>1 and <Un!;

2

TU~) = <Unf, QUng) (f, g E U·{Y)). It follows that for each i (1 ~ i ~ m),

I({;, (T - Q) gi)l ~ I<j; - Unli, Tg)1 + I<Unfi' T(gi - Un g;» I
+ I<Unfi - j;, QUng;)! + I<j;, Q(Ungi - gi)1

~ 211j; - Unit 111 + 2 II gi - Ungi II, < E

This proves (i).
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Since convex sets have the same closure in both the weak operator and the
strong operator topologies for [V] [3, p. 477], we obtain (ii). This completes
the proof.

It follows from Theorem 8, together with 1])1 C ~o C ~, that ~o is not
closed in the weak operator topology of [V].

For each positive integer m, let ::D(m) denote the set of m x m-real matrices
(Sij) such that L::l I Sij [ ~ I for each i, and L7:1 ISij [ ~ I for each j. Let
.Q(m) denote the set of those matrices (Sij) in ::D(m) such that (I Sij f) is a per­
mutation matrix. We show readily that the operator Sn : ~n ->0- fln induced
by a matrix (Sij) in ::D(m) is a contraction operator, If Sn Ib ~ I.

By the strong* operator topology of [V] on ~ we shall mean the topology
induced by a subbase consisting of sets of the form

{S: II(T - S)f112 < E, [f(T* - S*) g 112 < E} (f, g r;; V).

Let 1])1(Y) = {IyT: Tr;;I])I}, where YC X, and I])~ ={lyT: YC X, Tr;;I])I}'

THEOREM 9. ~ is the closed convex hull of I])~ in the strong* operator
topology of [L2].

LEMMA I I. Let Qn be the operator on fln induced by a matrix (qij) in .Q(m)
where m, n ~~ 1,2,.... Then Qn has a dilation Q r;; I])I(Y), where Y == U7:1 Din,
such that

and (fE V).

Proof. Let J = {I, 2, ... , m}. There exists a bijection a: J ->0- J and a
partition (11 , J2) of J such that

Let r E, q\ be a map such that r(Din) = D~(i) for i E J and rex) = x for
x E Din, where i ¢'. J. Let

E = U D·n.,
ieJ1

F= U D·n.,
iEJ2

E' = r(E), F' = reF) .

Define Q == (h - IF) T",. Then Y = E u F and Q E I])I(Y) C I])~. It is
easily verified that leT", = T",le' and 1FT", = T",IF' , so that T:le = h,r: ,
r: IF = IF,T:, and Q* = (IE' - IF') T: E 1])1( Y). We show readily that
QUn c= QnUn and Q*Un = Q~Un' This completes the proof.

The following lemma is an immediate consequence of the above lemma,
together with a known result: ::D(m) = ch .Q(m) [12, Lemma I I].

LEMMA 12. Let Sn be the operator on fln induced by a matrix (Sij) in ::D(m),
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where m, n =- 1,2, .... Then Sn has a dilation SE ch 1Jiy), where}' U;"1 D/'
such that SUn == SnUn and S*Un = S~Un .

Proof of Theorem 9. We see readily from Theorem 8 that g is closed in
the strong* operator topology of [V]. Thus, it suffices to show that for each
Tin g, there exists an S in ch 1J~ such that II 7".1;-- Sj; 112 < E and i P/; ­
S*j; 12 E (i = 1,2,... , k), where j;, g; E V (i 1,2, ... , k), k is a positive
integer, and E > O. We may assume without loss of generality that /; and g;
vanish outside an interval [0, N], where N is a positive integer, and'f; 12 I,
II g; 1'2 I. Choose an n sufficiently large so that

where h fl ,... , j;, , gl ,... , g" . Set 1111 "= 2n N. Let Tn be the compression of
T to Dn , and let (tm be the matrix defined by ti'J = (Tej", (i, jc j, 2, ... ).
Note that L~d 1 ti~ 1 cs:; 1 for each j and L:I 1 tI: 1 1 for each i. Choose a
positive integer m > m1 such that

)' , t" i E/(4(m1V/2) (I i ~ mIl,
~ '.I

"' 1

I t" E/(4(mt)1/2) (l i cs:; m 1 )·n
j,n/-! 1

lfwe define an m x m-matrix (s;;) by So = tI} (l l.J m), then (Si') t-c n(m).
Let Sn be the operator on Dn induced by the matrix (s;;). By Lemma 12, Sri
has a dilation S in ch(1J~) such that SUn == SnUn and S*Un " S~Un' We
have that for each h = J; ,... , j;, , gl ,... , g" .

TnUnh - SnUnh ,i~
ml

'\' '\' i n ,2
L L I t i ;,

i=m--jl j=l
I(f
icc_-l 'i-=m--i 1

t n.. i2)
'11 !

1//1 1111 '-F, ,

T*u I S*U I 11 2 / '\' '\' I n 12 / '\' (\' , n .2)In n 1 - n n 1 :2:::;-::::::: L.., L. tij! :"::::::::L L itij;
j=fn-~l i=l i -,lj=m+l

It follows from the above inequalities that II Th - Sh 1,2 < E and
S*h 112 < E for h =.h ,·.·,ft" , gl ,... , g". This completes the proof.

T*h -

THEOREM 10. If T E f!2 is a Hilbert-Schmidt operator, then there exists a
sequence (PI) in ch 1J' such that II T - P k 112 -'>- 0 as k -- 00.

The proof is immediate from Lemma 12, together with a minor modifica­
tion of the proof of Theorm 7.
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